ndslib function reference
24. ndslib
function reference¶
The ndslib
software library implements functions that we use in the book to
download datasets, and to encapsulate some computations. We provide descriptions
of the functions for each module below. Additional documentation can be found in
the ndslib library website.
ndslib.data.load_data(dataset, fname=None)
Loads data for use in examples.
- Parameters:
- datasetstr
The name of a dataset. Can be one of:
“bold_numpy” : Read a BOLD time-series as a numpy array.
“bold_volume” : Read a single volume of a BOLD time-series as a numpy array
“afq” : Read diffusion MRI data in tabular format
“age_groups_fa” : Read AFQ data and return dataframe divided by age-groups
“abide2_saggitals”: Read ABIDE2 mid-saggitals as numpy arrays.
- fnamestr, optional.
If provided, data will be cached to this local path and retrieved from there on future calls with the same value.
ndslib.data.download_bids_dataset()
Makes a minimal BIDS dataset with one fMRI subject from OpenNeuro dataset “ds001233”.
ndslib.viz.imshow_with_annot(im, vmax=40)
Like imshow, but with added annotation of the array values.
- Parameters:
im : numpy array
ndslib.viz.plot_diffeomorphic_map(mapping, ax, delta=15, direct_grid_shape=None, direct_grid2world=- 1, inverse_grid_shape=None, inverse_grid2world=- 1)
Draw the effect of warping a regular lattice by a diffeomorphic map. Draws a diffeomorphic map by showing the effect of the deformation on a regular grid. The resulting figure contains two images: the direct transformation is plotted to the left, and the inverse transformation is plotted to the right.
- Parameters:
- mappingDiffeomorphicMap
the diffeomorphic map to be drawn
- deltaint, optional
the size (in pixels) of the squares of the regular lattice to be used to plot the warping effects. Each square will be delta x delta pixels. By default, the size will be 10 pixels.
- fnamestring, optional
the name of the file the figure will be written to. If None (default), the figure will not be saved to disk.
- direct_grid_shapetuple, shape (2,), optional
the shape of the grid image after being deformed by the direct transformation. By default, the shape of the deformed grid is the same as the grid of the displacement field, which is by default equal to the shape of the fixed image. In other words, the resulting deformed grid (deformed by the direct transformation) will normally have the same shape as the fixed image.
- direct_grid2worldarray, shape (3, 3), optional
the affine transformation mapping the direct grid’s coordinates to physical space. By default, this transformation will correspond to the image-to-world transformation corresponding to the default direct_grid_shape (in general, if users specify a direct_grid_shape, they should also specify direct_grid2world).
- inverse_grid_shapetuple, shape (2,), optional
the shape of the grid image after being deformed by the inverse transformation. By default, the shape of the deformed grid under the inverse transform is the same as the image used as “moving” when the diffeomorphic map was generated by a registration algorithm (so it corresponds to the effect of warping the static image towards the moving).
- inverse_grid2worldarray, shape (3, 3), optional
the affine transformation mapping inverse grid’s coordinates to physical space. By default, this transformation will correspond to the image-to-world transformation corresponding to the default inverse_grid_shape (in general, if users specify an inverse_grid_shape, they should also specify inverse_grid2world).
- Returns:
- warped_forwardarray
Image with the grid showing the effect of transforming the moving image to the static image. The shape will be direct_grid_shape if specified, otherwise the shape of the static image.
- warped_backwardarray
Image with the grid showing the effect of transforming the static image to the moving image. Shape will be inverse_grid_shape if specified, otherwise the shape of the moving image.
Notes:
The default value for the affine transformation is “-1” to handle the case in which the user provides “None” as input meaning “identity”. If we used None as default, we wouldn’t know if the user specifically wants to use the identity (specifically passing None) or if it was left unspecified, meaning to use the appropriate default matrix.
ndslib.viz.plot_coef_path(estimator, X, y, alpha, **kwargs)
Plot the coefficient path for a sklearn estimator.
- Parameters:
- estimatorsklearn estimator
For example “Lasso()”
- Xndarray (n, m)
Feature matrix
- yndarray (n,)
Target matrix
- Returns:
ax : Matplotlib Axes object
ndslib.viz.plot_train_test(x_range, train_scores, test_scores, label, hlines=None)
Plot train/test \(R^2\)
- Parameters:
- x_rangesequence
The range of x values used (e.g., number of features, number of samples)
- train_scoressequence
The train r2_score corresponding to different x values
- test_scoressequence
The test r2_score corresponding to different x values
- labelstr
Used in the legend labels.
- hlinesdict
A dictionary where keys are labels and values are y values for hlines.
- Returns:
ax : Matplotlib Axes object.
ndslib.viz.plot_learning_curves(estimators, X_sets, y, train_sizes, labels=None, errors=True, **kwargs)
Generate multi-panel plot displaying learning curves for multiple predictor sets and/or estimators.
- Parameters:
- estimatorslist,
A scikit-learn Estimator or list of estimators. If a list is provided, it must have the same number of elements as X_sets.
- X_setslist,
An NDArray or similar object, or list. If a list is passed, it must have the same number of elements as estimators.
- yndarray
A 1-D numpy array (or pandas Series) representing the outcome variable to predict.
- train_sizeslist
List of ints providing the sample sizes at which to evaluate the estimator.
- labelslist, optional.
List of labels for the panels. Must have the same number of elements as X_sets.
- errorsbool, optional.
If True, plots error bars representing 1 StDev. Default: True.
- kwargsdict, optional
Optional keyword arguments passed on to sklearn’s learning_curve utility.
ndslib.viz.plot_graphviz_tree(tree, feature_names)
Takes a tree as input, calls Scikit-learn’s export_graphviz function to generate an image of the tree using “graphviz”, and then plots the result in-line.
- Parameters:
tree: sklearn tree object feature_names : sequence of strings
ndslib.image.gaussian_kernel(x=20, sigma=4)
Construct a 2D Gaussian kernel for image processing
- Parameters:
- xint, optional
The number of pixels on a side for the filter. Default : 20
- sigmafloat, optional
The standard deviation parameter for the Gaussian. Default : 4
- Returns:
- gaussndarray
Contains the values of the 2D Gaussian normalized to sum to 1.